请选择 进入手机版 | 继续访问电脑版

淘宝开店

搜索
查看: 140|回复: 0

淘宝搜索---深入浅出的带你读懂搜索 之六:马尔科夫链的扩展 贝叶斯网络&布 ...

[复制链接]

发表于 2017-10-11 16:29 | 显示全部楼层 |阅读模式

我们在前面的系列中多次提到马尔可夫链 (Markov Chain),它描述了一种状态序列,其每个状态值取决于前面有限个状态。这种模型,对很多实际问题来讲是一种很粗略的简化。在现实生活中,很多事物相互的关系并不能用一条链来串起来。它们之间的关系可能是交叉的、错综复杂的。比如在下图中可以看到,心血管疾病和它的成因之间的关系是错综复杂的。显然无法用一个链来表示。
53a46accc4b30fb47b617c1e43d279ff.jpg


我们可以把上述的有向图看成一个网络,它就是贝叶斯网络。其中每个圆圈表示一个状态。状态之间的连线表示它们的因果关系。比如从心血管疾病出发到吸烟的弧线表示心血管疾病可能和吸烟有关。当然,这些关系可以有一个量化的可信度 (belief),用一个概率描述。我们可以通过这样一张网络估计出一个人的心血管疾病的可能性。在网络中每个节点概率的计算,可以用贝叶斯公式来进行,贝叶斯网络因此而得名。由于网络的每个弧有一个可信度,贝叶斯网络也被称作信念网络 (belief networks)。


和马尔可夫链类似,贝叶斯网络中的每个状态值取决于前面有限个状态。不同的是,贝叶斯网络比马尔可夫链灵活,它不受马尔可夫链的链状结构的约束,因此可以更准确地描述事件之间的相关性。可以讲,马尔可夫链是贝叶斯网络的特例,而贝叶斯网络是马尔可夫链的推广。


使用贝叶斯网络必须知道各个状态之间相关的概率。得到这些参数的过程叫做训练。和训练马尔可夫模型一样,训练贝叶斯网络要用一些已知的数据。比如在训练上面的网络,需要知道一些心血管疾病和吸烟、家族病史等有关的情况。相比马尔可夫链,贝叶斯网络的训练比较复杂,从理论上讲,它是一个 NP-complete 问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。




贝叶斯网络在图像处理、文字处理、支持决策等方面有很多应用。在文字处理方面,语义相近的词之间的关系可以用一个贝叶斯网络来描述。我们利用贝叶斯网络,可以找出近义词和相关的词,在 淘宝搜索和直通车以及钻展等广告中都有直接的应用。
在日常生活中,包括在设计计算机软件时,我们经常要判断一个元素是否在一个集合中。比如在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断它是否在已知的字典中);在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上;在网络爬虫里,一个网址是否被访问过等等。最直接的方法就是将集合中全部的元素存在计算机中,遇到一个新元素时,将它和集合中的元素直接比较即可。一般来讲,计算机中的集合是用哈希表(hash table)来存储的。它的好处是快速准确,缺点是费存储空间。当集合比较小时,这个问题不显著,但是当集合巨大时,哈希表存储效率低的问题就显现出来了。比如说,一个象 网易163,Hotmail 和 Gmail那样的公众电子邮件(email)提供商,总是需要过滤来自发送垃圾邮件的人(spamer)的垃圾邮件。一个办法就是记录下那些发垃圾邮件的 email 地址。由于那些发送者不停地在注册新的地址,全世界少说也有几十亿个发垃圾邮件的地址,将他们都存起来则需要大量的网络服务器。如果用哈希表,每存储一亿个 email 地址, 就需要 1.6GB 的内存(用哈希表实现的具体办法是将每一个 email 地址对应成一个八字节的信息指纹,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email 地址需要占用十六个字节。一亿个地址大约要 1.6GB, 即十六亿字节的内存。参见系列十三 信息指纹及其应用)。因此存贮几十亿个邮件地址可能需要上百 GB 的内存。除非是超级计算机,一般服务器是无法存储的。


至此,就必须要介绍一种称作布隆过滤器的数学工具,它只需要哈希表 1/8 到 1/4 的大小就能解决同样的问题。


布隆过滤器是由巴顿.布隆于1970年提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。我们通过上面的例子来说明起工作原理。


假定我们存储一亿个电子邮件地址,我们先建立一个十六亿二进制(比特),即两亿字节的向量,然后将这十六亿个二进制全部设置为零。对于每一个电子邮件地址 X,我们用八个不同的随机数产生器(F1,F2, ...,F8) 产生八个信息指纹(f1, f2, ..., f8)。再用一个随机数产生器 G 把这八个信息指纹映射到 1 到十六亿中的八个自然数 g1, g2, ...,g8。现在我们把这八个位置的二进制全部设置为一。当我们对这一亿个 email 地址都进行这样的处理后。一个针对这些 email 地址的布隆过滤器就建成了。(见下图)

现在,让我们看看如何用布隆过滤器来检测一个可疑的电子邮件地址 Y 是否在黑名单中。我们用相同的八个随机数产生器(F1, F2, ..., F8)对这个地址产生八个信息指纹 s1,s2,...,s8,然后将这八个指纹对应到布隆过滤器的八个二进制位,分别是 t1,t2,...,t8。如果 Y 在黑名单中,显然,t1,t2,..,t8 对应的八个二进制一定是一。这样在遇到任何在黑名单中的电子邮件地址,我们都能准确地发现。


布隆过滤器决不会漏掉任何一个在黑名单中的可疑地址。但是,它有一条不足之处。也就是它有极小的可能将一个不在黑名单中的电子邮件地址判定为在黑名单中,因为有可能某个好的邮件地址正巧对应个八个都被设置成一的二进制位。好在这种可能性很小。我们把它称为误识概率。在上面的例子中,误识概率在万分之一以下。


布隆过滤器的好处在于快速,省空间。但是有一定的误识别率。常见的补救办法是在建立一个小的白名单,存储那些可能别误判的邮件地址。


说道这里可能很多人就明白淘宝,天猫是怎么来筛选一些低质量,品质差的产品了吧,当然阿里巴巴可能会用自己独有的算法和手段来实现这样的目的和效果,但是设计这种算法的原理和上面说的大体是一致的。
因为国庆长假,所以说的很多系列的东西搁浅了十几天,明天继续讲解的相关知识可能会非常长,牵涉到布尔运算的基础,PS.重中之重会细致的讲述淘宝及其他平台的产品个性化推荐的展现方式原理,也就是多维空间种两个不同向量的余弦夹角的应用,相信明天的帖子可以解答许多人关于淘宝,天猫是怎么来做产品的匹配和个性化展现的问题。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Copyright © 2001-2013 Comsenz Inc.Powered by Discuz!X3.2
手机版小黑屋地图 淘宝开店
快速回复 返回顶部 返回列表